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PelePhysics is a repository of physics databases and implementation code for use within the other Pele codes. In
particular, the choice of chemistry and transport models as well as associated functions and capabilities are managed
in PelePhysics. PelePhysics has an official project homepage, and can be obtained via GitHub. The documentation
pages appearing here are distributed with the code in the Docs/sphinx folder as “restructured text” files. The html
is built automatically with certain pushes to the PelePhysics GibHub repository. A local version can also be built as
follows

cd ${PELE_PHYSICS_DIR}/build
sphinx-build -M html ../Docs/sphinx .

where PELE_PHYSICS_DIR is the location of your clone of the PelePhysics repository. To view the local pages,
point your web browser at the file ${PELE_PHYSICS_DIR}/build/html/index.html.

Documentation contents: 1
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2 Documentation contents:



CHAPTER 1

PelePhysics Quickstart

Greetings impatient user. Once again, note that this documentation focuses on the CHEMISTRY part of PelePhysics.

• If you are familiar with PelePhysics, have it installed already and would simply like to know which chemistry-
related keywords and/or environment variables to set in your various input files to perform a simulation with
one of the codes available in the PeleSuite, then I invite you to directly skip to section Activating the different
CVODE solver options via the input files.

• If you are a complete beginner, I urge you to carefully read the two following chapters Obtaining PelePhysics
and Install CVODE and SuiteSparse, to properly set-up your working environment.

• If you are in a hurry but still would like more context, visit section Introduction to be referred to portions of this
document that are of interest to you.

1.1 Obtaining PelePhysics

First, make sure that “Git” is installed on your machine—we recommend version 1.7.x or higher. Then. . .

1. Download the AMReX repository by typing:

git clone https://github.com/AMReX-Codes/amrex.git

This will create an amrex/ folder on your machine. Next, set the environment variable AMREX_HOME to point to the
location where you have downloaded AMReX:

export AMREX_HOME=/path/to/amrex/

2. Clone the Pele repository:

git clone git@github.com:AMReX-Combustion/PelePhysics.git

This will create a PelePhysics folder on your machine. Set the environment variable PELE_PHYSICS_HOME to
point to the location of this folder.

3. Periodically update both of these repositories by typing git pull within each repository.

3
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1.2 Install CVODE and SuiteSparse

*The user is in charge of installing the proper CVODE version, as well as installing and properly linking the
KLU library if sparsity features are needed.

1.2.1 SuiteSparse

SuiteSparse is a suite of Sparse Matrix software that is very handy when dealing with big kinetic mechanisms (the
Jacobian of which are usually very sparse). In such a case, CVODE can make use of the KLU library, which is part
of SuiteSparse, to perform sparse linear algebra. Documentation and further information can be found on SuiteSparse
website.

At the time this note is written, the recommended SuiteSparse version is 5.4.0. Follow these steps to set-up your
working environment and build the required libraries:

1. Go to the SuiteSparse website and download the compressed file for the recommended version

2. Copy the tar file into $PELE_PHYSICS_HOME/ThirdParty

3. Untar (‘tar -zxvf’), cd into it and type ‘make’ into the following folders: SuiteSparse_config, AMD,
COLAMD, BTF

4. Go into metis-5.1.0 and type ‘make config shared=1’ followed by ‘make’

5. Go into KLU and type ‘make’

6. Check that all dynamic libraries have correctly been generated and copied into the folder
$PELE_PHYSICS_HOME/ThirdParty/SuiteSparse/lib

7. It is recommended that you add the path $PELE_PHYSICS_HOME/ThirdParty/SuiteSparse/lib to
your LD_LIBRARY_PATH, for precaution

8. Note that depending upon your compiler, the static .a versions of the libraries might also be required. In such
a case, you can copy them directly from each program folder into the SuiteSparse/lib folder

1.2.2 CVODE

CVODE is a solver for stiff and nonstiff ordinary differential equation (ODE) systems. Documentation and further
information can be found online. At the time this note is written, the recommended CVODE version is v5.0.0.

The CVODE sources are distributed as compressed archives, with names following the convention cvode-x.y.z.
tar.gz. They can be downloaded by following this link. However, we have designed a simple script enabling to
install the current version the correct way. Simply:

1. Go into $PELE_PHYSICS_HOME/ThirdParty

2. Execute either get_sundials_v5dev1.sh or get_sundials_v5dev1_CUDA.sh depending on your
application (GPU or not) and machine

3. Set the SUNDIALS_LIB_DIR environment variable to point to the location where all CVODE libraries have
been generated. If you followed these guidelines, it should be $PELE_PHYSICS_HOME/ThirdParty/
sundials/instdir/lib/

4. It is recommended, here also, that you add the path $PELE_PHYSICS_HOME/ThirdParty/sundials/
instdir/lib to your LD_LIBRARY_PATH, as paths can get lost in the build of external libraries

Note that if you do not want to use the KLU library, you can also disable the flags (-DKLU_ENABLE) in the *.sh
scripts.

4 Chapter 1. PelePhysics Quickstart
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CHAPTER 2

Introduction

2.1 Objectives and State-Of-The-Art

What we will call the PeleSuite is currently composed of 3 separate codes:

• PelePhysics is a repository of physics databases and implementation code for use within the other Pele codes.
In particular, the choice of chemistry and transport models as well as associated functions and capabilities are
managed in PelePhysics.

• PeleLM is an adaptive-mesh Low-Mach number hydrodynamics code for reacting flows. It has a sibling,
PeleLMeX, that solves for the same type of flow using a subtly different numerical approach.

• PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows.

All three codes rely on AMReX, which is a software frameworks that provides the data structure and enable massive
parallelization.

5
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PelePhysics (as well as the ChemDriver object of PeleLM ) used to rely upon DVODE [VODE1989] to perform
the chemistry integration, no matter the problem at hand. DVODE is a very robust, but slightly outdated, variable-
coefficient Ordinary Differential Equation (ODE) solver written in Fortran 77. At its core, it uses a direct dense linear
solver. DVODE is very efficient in the resolution of small stiff systems of equations but can become prohibitively
expensive when dealing with bigger systems of equations, such as those frequently encountered in combustion systems.

In recent years, the Sundials team at LLNL [LLNL2005] has been involved in the active development of a modern,
C++ version, of DVODE called CVODE. CVODE implements the same functionalities as those available in DVODE,
but offers much more flexibility through its user-friendly set of interface routines. Additionally, other linear solvers
are available, such as iterative or sparse solvers which can prove to be very efficient in handling “larger” systems of
equations.

The objective of this user-guide is to document the CVODE-based chemistry integration implemented in PelePhysics.
Although it is possible to use CVODE in PeleC, the following is mainly intended for PeleLM users. This user-guide
will cover:

• ODE equations (reactor type)

• Default settings (tolerances/order/. . . )

• Linear solvers available –along with exemples of performance

• Setting-up a PelePhysics test case

• . . .

6 Chapter 2. Introduction
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2.2 How to naviguate this documentation

This section provides a short overview of the chemistry-related features of PelePhysics. For an in-depth discussion,
relevant references to specific sections of this manuscript are given.

• In PelePhysics, the user can select between two different reactor types. The first type is a constant volume
reactor, were the choice of fixed variables are the internal energy and the density, to comply with PeleC trans-
ported variables. This reproduces what was originally implemented with DVODE in PelePhysics. A second
reactor type formulated in terms of enthalpy and density has been put in place, to comply with PeleLM. Both
reactors are available in DVODE (in fortran 90) and CVODE (in cpp). See sections The different reactors for
additional details, and Activating the different CVODE solver options via the input files to see how to activate
one or the other via the input files.

• With both reactors, it is possible to use an Analytical Jacobian (depending upon the choice of linear solver, see
section Linear Algebra.)

• Three different types of linear solvers are implemented, see section Linear Algebra for additional details, and
Activating the different CVODE solver options via the input files to see how to make a selection:

– a dense direct solver – with or without Analytical Jacobian

– a sparse direct solver (requires the KLU library) – always requires an Analytical Jacobian

– a couple of sparse iterative solvers from the GMRES family – preconditioned or not

• Regression testings have been put in place in PelePhysics to test the CVODE integration. See section Validation
of the CV reactor implementation in CVODE (with CANTERA) for validations, and section The ReactEval_C
test case with CVODE in details for a step-by-step example.

• A CVODE version running on GPU is also technically available but the documentation is a WIP. The interested
user can contact code developers for additional information

• PelePhysics uses an automatic chemistry-related routine generator: CEPTR. CEPTR is part of the sources of
PelePhysics. With CEPTR, a unique chemistry file is generated for a specific kinetic scheme. Instructions to
generate your own chemistry files (all you need are chemistry files in the famous Cantera yaml format) are
discussed in section CEPTR: Chemistry Evaluation for Pele Through Recasting. Note that PelePhysics already
offers a large choice of more than 20 different kinetic schemes.

2.2. How to naviguate this documentation 7
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CHAPTER 3

Chemistry

3.1 A brief introduction to CVODE

CVODE is part of a software family called sundials for SUite of Nonlinear and DIfferential / ALgebraic equation
Solver [LLNL2005].

The version used with PelePhysics for the tests presented in this document is v4.0.2. This does not mean this
is the recommended version to link with PelePhysics. Always refer to Install CVODE and SuiteSparse to know
which versions of CVODE/SuiteSparse to use !!

In the following, details pertaining to the methods implemented in PelePhysics are provided. The interested user is
referred to the very exhaustive CVODE User-guide for more information.

Most of this section is adapted from the v4.1.0 Cvode Documentation.

3.1.1 Numerical methods overview

The methods implemented in CVODE are variable-order, variable-step multistep methods, based on formulas of the
form

𝐾1∑︁
𝑖=0

𝛼𝑛,𝑖𝑦
𝑛−𝑖 + ℎ𝑛

𝐾2∑︁
𝑖=0

𝛽𝑛,𝑖�̇�
𝑛−𝑖 = 0

Here the 𝑦𝑛 are computed approximations to 𝑦(𝑡𝑛), and ℎ𝑛 = 𝑡𝑛 − 𝑡𝑛−1 is the step size. For stiff problems, CVODE
includes the Backward Differentiation Formulas (BDF) in so-called fixed-leading coefficient (FLC) form, given by
𝐾1 = 𝑞 and 𝐾2 = 0, with order 𝑞 varying between 1 and 5. The coefficients are uniquely determined by the method
type, its order, the recent history of the step sizes, and the normalization 𝛼𝑛,0 = −1 [BYRNE1975], [JAC1980].

A nonlinear system must be solved (approximately) at each integration step. This nonlinear system can be formulated
as a root-finding problem

𝐹 (𝑦𝑛) = 𝑦𝑛 − ℎ𝑛𝛽𝑛,0𝑓(𝑡𝑛, 𝑦
𝑛) − 𝑎𝑛 = 0

9
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where 𝑎𝑛 =
∑︀

𝑖>0(𝛼𝑛,𝑖𝑦
𝑛−𝑖+ℎ𝑛𝛽𝑛,𝑖�̇�

𝑛−𝑖). CVODE provides several non-linear solver choices. By default, CVODE
solves this problem with a Newton iteration, which requires the solution of linear systems

𝑀 [𝑦𝑛(𝑚+1) − 𝑦𝑛(𝑚)] = −𝐹 (𝑦𝑛(𝑚)) (3.1)

in which

𝑀 ≈ 𝐼 − 𝛾𝐽, 𝐽 =
𝜕𝑓

𝜕𝑦
, 𝑎𝑛𝑑 𝛾 = ℎ𝑛𝛽𝑛,0

3.1.2 Linear Algebra

To find the solution of the linear system (3.1); CVODE provides several linear solver choices. The linear solver
modules distributed with Sundials are organized in two families, a direct family comprising direct linear solvers for
dense, banded, or sparse matrices, and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers.
The solvers offered through these modules that are of interest to us are:

• a dense direct solver

• a sparse direct solver interface using the KLU sparse solver library

• SPGMR, a scaled -possibly preconditioned- GMRES (Generalized Minimal Residual method) solver
[BROWN1990]

When using a dense direct solver, the user has the option to specify an Analytical Jacobian. If none is provided,
a difference quotients is performed. When a sparse direct solver is employed however, the user must specify an
analytical Jacobian. All of these options have been enabled in PelePhysics.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF integrator and a pre-
conditioned Krylov method yields a powerful tool. In this case, the linear solve is matrix-free, and the default Newton
iteration is an Inexact Newton iteration, in which 𝑀 is applied with matrix-vector products 𝐽𝑣 obtained by either
difference quotients or a user-supplied routine. In PelePhysics, it is possible to use either a non-preconditioned or a
preconditioned GMRES solver. In the latter case, the preconditioner can be either specified in a dense or sparse format
(if the KLU library is linked to CVODE), and it is provided in the form of a Jacobian approximation, based on the
work of [McNenly2015].

3.1.3 Error control, step-sizing, order determination

In the process of controlling errors at various levels, CVODE uses a weighted root-mean-square norm, denoted || ∙
||𝑊𝑅𝑀𝑆 , for all error-like quantities. The multiplicative weights used are based on the current solution and on the
relative and absolute tolerances input by the user, namely

𝑊𝑖 =
1

[𝑟𝑡𝑜𝑙|𝑦𝑖| + 𝑎𝑡𝑜𝑙𝑖]

Because 1/𝑊𝑖 represents a tolerance in the component 𝑦𝑖, a vector whose norm is 1 is regarded as small. In Pele-
Physics, both these tolerances are fixed to a value of 1.0𝑒− 10.

A critical part of CVODE - making it an ODE solver rather than just an ODE method, is its control of the local error. At
every step, the local error is estimated and required to satisfy tolerance conditions, and the step is redone with reduced
step size whenever that error test fails. Note that in PelePhysics, the first time step is always forced to 1.0𝑒− 9.

In addition to adjusting the step size to meet the local error test, CVODE periodically adjusts the order, with the goal
of maximizing the step size. The integration starts out at order 1 and varies the order dynamically after that. The basic
idea is to pick the order 𝑞 for which a polynomial of order 𝑞 best fits the discrete data involved in the multistep method.
In PelePhysics, the maximum order is limited to 2 for stability reasons.

The various algorithmic features of CVODE are inherited from VODE and VODPK, and are documented in
[VODE1989] and [BROWN1990]. They are also summarized in the CVODE User-guide as well as in [LLNL2005].

10 Chapter 3. Chemistry
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3.2 CVODE implementation in PelePhysics

3.2.1 The different reactors

Throughout this document, what we call a reactor is in fact a zero-dimensional model, the simplest representation of
a chemically reacting system. Depending upon the choice of state variables driving the system, several different types
of reactor can be considered; and the “correct” choice is case dependent. In general, the state variables for a reactor
model are

• The reactor mass

• The reactor volume

• The energy of the system

• The mass fractions for each species

The most common type of reactor is the constant-volume (CV) reactor, which is the one used to advance the chemistry
within PeleC. This reactor type is equivalent to a rigid vessel with fixed volume but variable pressure. In PelePhysics,
the constant-volume constraint is ensured by keeping the density 𝜌 fixed -since there is no change of mass; and the
indirect choice of energy in the CV reactor implementation is the total energy 𝐸. 𝐸’s evolution in our case is solely
due to a constant external source term �̇�𝑒𝑥𝑡, which accounts for the effects of advection and convection in the Spectral
Deferred Correction (SDC) scheme that all Pele codes use (see the PeleLM documentation for example). In that sense,
the CV reactor is an abstraction and is not a true closed vessel.

Note that CVODE still integrates the mass fractions (𝜌𝑌 ) together with energy for stability reasons, but a change of
variable is applied to effectively transport the temperature 𝑇 via

𝜌𝐶𝑣
𝜕𝑇

𝜕𝑡
= 𝜌�̇�𝑒𝑥𝑡 −

∑︁
𝑘

𝑒𝑘�̇�
𝑀
𝑘

where the 𝑒𝑘 are the species internal energy and �̇�𝑀
𝑘 is the species 𝑘 mass production rate.

In a second implementation, that we will label constant-volume-enthalpy (CVH), the mass-weighted total enthalpy
𝜌𝐻 is used and conserved along with 𝜌. This reactor type is also an abstraction. Here also, 𝜌𝐻 evolves according to
an external source term ˙𝜌𝐻𝑒𝑥𝑡, and in CVODE, the mass fractions (𝜌𝑌 ) and temperature 𝑇 are integrated according
to

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝜌�̇�𝑒𝑥𝑡 −

∑︁
𝑘

ℎ𝑘�̇�
𝑀
𝑘

where the ℎ𝑘 are the species internal energy.

Validation of the CV reactor implementation in CVODE (with CANTERA)

CANTERA is an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport
processes. It is a very robust and fast tool written in C++ that is also based on CVODE to perform the chemistry
integration. CANTERA is well recognized in the combustion community, and by comparing our results to CANTERA
reactor simulations, we will be able to validate our implementation.

Note that only the CV reactor model described above can be validated, since as we discussed before, the CVH reactor
model is an abstraction needed for our Low-Mach PeleLM chemistry integration. Also, to have a real CV reactor,
the external source terms for the energy and species equations in PelePhysics have been set to 0 (see The different
reactors).

The parameters chosen to initialize the simulation in both CANTERA and PelePhysics are described in Table 3.1. The
kinetic mechanism used for hydrogen combustion is available in PelePhysics. Note that small sub-steps are explicitly
taken until the final time is reached, but CVODE’s internal machinery can subdivides the 𝑑𝑡 even further. For the

3.2. CVODE implementation in PelePhysics 11
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purpose of validation, the direct dense solver of CVODE is selected in PelePhysics (see section Activating the different
CVODE solver options via the input files).

3.1: Parameters for initializing simulation
Mechanism Mixture Initial T Initial phi Pressure dt Final time
Li Dryer H2/O2 1500 K 0.8 101325 Pa 1.0e-8s 3.0e-6s

Results are plotted in Fig 3.2 and 3.3. for the 𝐻2/𝑂2 mixture. All curves are indistinguishable, so the relative error
of all major quantities is also plotted in Fig. 3.4. Note that 𝐻2 and 𝑂2 relative errors have similar features, and
that relative errors observed for 𝐻 and 𝐻2𝑂 are representative of those exhibited by, respectively, intermediates and
products.

3.2: Evolution of temperature, pressure and enthalpy in a CV reactor,
computed with the LiDryer mechanism. Black: CANTERA, red: Pele-
Physics.

12 Chapter 3. Chemistry
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3.3: Evolution of major species in a CV reactor, computed with the
LiDryer mechanism. Black: CANTERA, red: PelePhysics.

3.2. CVODE implementation in PelePhysics 13
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3.4: Relative errors on the temperature, pressure, enthalpy and major
species in a CV reactor, computed with the LiDryer mechanism.

Overall, considering the many CVODE controlling parameters, results are deemed acceptable and that concludes the
validation of the reactors implemented in PelePhysics.

3.2.2 Activating the different CVODE solver options via the input files

Note that at this point, it is believed that the user has properly installed CVODE as well as the SuiteSparse
package. If not, refer to Install CVODE and SuiteSparse.

Choosing between DVODE/CVODE (as well as other ODE integrators that will not be discussed in this section) is
done at compile time, via the GNUmakefile. On the other hand, the type of reactor and specifics of the numerical
algorithm are selected via keywords in the input file. There is a subtlety though: when any sparsity feature is required,
the choice should also be made at compile time since external libraries will be required; and if the compilation is not
performed properly, subsequent options via keywords in the input file can either lead to an error or fall back to a dense
formulation of the problem. This is discussed in more depth in what follows.

The GNUmakefile

The default setting is to use DVODE in PelePhysics; i.e, if no modifications are done to the original GNUmakefile
(see the test case ReactEval_FORTRAN of PelePhysics), then this option should automatically be selected. To activate

14 Chapter 3. Chemistry
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CVODE, the user must first activates the use of Sundials via the following line:

USE_SUNDIALS_PP = TRUE

Note that this is a PelePhysics flag, so it will automatically be recognized in the Pele codes. However, if CVODE has
not been installed as prescribed in Install CVODE and SuiteSparse then a line specifying the location of the Sundials
libraries should be added:

CVODE_LIB_DIR=PathToSundials/instdir/lib/

By default, if Sundials is used then the implicit ODE solver CVODE is selected. The user then has to choose between
a number of different methods to integrate the linear system arising during the implicit solve. Add the following line
if sparsity features are required:

PELE_USE_KLU = TRUE

Likewise, if SuiteSparse has not been installed as prescribed in Install CVODE and SuiteSparse, then a line specifying
its location should be added:

SUITESPARSE_DIR=PathToSuiteSparse/

All of the flags discussed in this subection are used in $PELE_PHYSICS_HOME/ThirdPartyThirdParty/
Make.ThirdParty.

The input file

The input file is made up of specific blocks containing keywords that apply to specific areas of the integrationof
the problem at hand. The suffix associated with each block of keywords should help the user in determining which
keywords are needed in his case, depending on the options selected via the GNUmakefile. If CVODE is enabled via
the GNUmakefile, for example, keywords starting with cvode.* are relevant. The general ode.* keywords are
shared by all ODE integrators and thus are also relevant for CVODE:

• ode.reactor_type enable to switch from a CV reactor (=1) to a CVH reactor (=2).

• cvode.solve_type controls the CVODE linear integration method: choose 1 to enable the dense direct
linear solver, 5 for the sparse direct linear solver (if the KLU library has been linked) and 99 for the Krylov
iterative solver

• ode.analytical_jacobian is a bit less obvious:

– If cvode.solve_type = 1, then ode.analytical_jacobian = 1 will activate the use of an
Analytical Jacobian.

– If cvode.solve_type = 99, then ode.analytical_jacobian = 1 will activate the pre-
conditioned GMRES solver while ode.analytical_jacobian = 0 will activate the non-
preconditioned GMRES solver.

– If cvode.solve_type = 99, ode.analytical_jacobian = 1 and the KLU library is linked,
then the preconditioned solve is done in a sparse format.

– With cvode.solve_type = 5, the only allowed option is ode.analytical_jacobian = 1.

3.2.3 The ReactEval_C test case with CVODE in details

This tutorial has been adapted from the ReactEval_FORTRAN tutorial employed in the series of regression tests to
monitor the DVODE chemistry integration. The domain considered is a 2𝑥1024𝑥2 box, where the initial temperature
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is different in each (𝑖, 𝑗, 𝑘)− cell, according to a 𝑦− evolving sinusoidal profile, see Fig. 3.1:

𝑇 (𝑖, 𝑗, 𝑘) = 𝑇𝑙 + (𝑇ℎ − 𝑇𝑙)
𝑦(𝑖, 𝑗, 𝑘)

𝐿
+ 𝑑𝑇𝑠𝑖𝑛

(︂
2𝜋

𝑦(𝑖, 𝑗, 𝑘)

𝑃

)︂
The different parameters involved are summarized in Table 3.5. The initial pressure is 1 atm. The initial composition
is the same in every cell, and is a mixture of 0.1 𝐶𝑛𝐻𝑚, 0.2 𝑂2 and 0.7 𝑁2 in mass fractions.

Various fuels and kinetic mechanisms can be employed. For the purpose of this tutorial, two common fuels will be
considered: methane (n=1 and m=4) and n-dodecane (n=12 and m=26), modelled via the drm and dodecane_wang
kinetic schemes, respectively. Both mechanisms are available in PelePhysics.

The following focuses on the 𝐶𝐻4/𝑂2 example, but performances for both mechanisms and initial composition will
be reported in the results section.

3.5: Parameters used to initialize T in the ReactEval_C test case
Tl Th dT L P
2000 K 2500 K 100 K 1024 L/4

3.1: The ReactEval_C test case

The GNUmakefile

For this example, the USE_SUNDIALS_PP flag should be set to true, as the ODE integration is called from the C++
routine directly using CVODE. Additionally, the FUEGO_GAS flag should be set to true and the chemistry model
should be set to drm19. The full file reads as follows:

Note that the TINY_PROFILE flag has been activated to obtain statistics on the run. This is an AMREX option.

The input file

The run parameters that can be controlled via inputs.3d input file for this example are as follows:

#ODE solver options
# REACTOR mode
ode.dt = 1.e-05
ode.ndt = 10
# Reactor formalism: 1=full e, 2=full h
ode.reactor_type = 1

(continues on next page)

16 Chapter 3. Chemistry

./Visualization/Case_ReactEvalCvode.001.png


PelePhysics Documentation, Release 2022.10

(continued from previous page)

# Tolerances for ODE solve
ode.rtol = 1e-9
ode.atol = 1e-9
# Select ARK/CV-ODE Jacobian eval: 0=FD 1=AJ
ode.analytical_jacobian = 0
#CVODE SPECIFICS
# Choose between sparse (5) dense (1/101) iterative (99) solver
cvode.solve_type = 1

#OTHER
# Max size of problem
max_grid_size = 2
# Choose name of output pltfile
amr.plot_file = plt
# Fuel species
fuel_name = CH4

so in this example, a CV reactor model is chosen to integrate each cell, and the dense direct solve without analytical
Jacobian is activated. Each cell is then integrated for a total of 1.𝑒 − 05 seconds, with 10 external time steps. This
means that the actual 𝑑𝑡 is 1.𝑒 − 06𝑠, which is more than what is typically used in the PeleC code, but consistent
with what is used in PeleLM. Note that the fuel is explicitly specified to be methane. By default, the number of cells
integrated simultaneously by one CVODE instance is 11, but the AMREX block-integration proceeds by blocks of
2𝑥2𝑥2.

Results

It took 52.61s to integrate the 4096 cells of this box, with 4 MPI processes and no OMP process. The resulting
temperature evolution for all cells in the y-direction is displayed in Fig. 3.2.

3.2: Evolution of temperature in the 2x1024x2 example box, using a CV reactor and a dense direct solve, and computed
with the DRM mechanism. Black: t=0s, red: t=1e-05s

1 NOTE that only one cell at a time should be integrated with CVODE right now. The vectorized version on CPU is still WIP and not properly
implemented for all linear solvers so that no computational gain should be expected from solving several cells at a time.
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3.2.4 To go further: ReactEval_C with CVODE and the KLU library

The GNUmakefile

Only the middle part of the GNUmakefile needs to be modified compared to the previous example.

The input file

For the KLU library to be of use, a solver utilizing sparsity features should be selected. We modify the input file as
follows:

So that now, a preconditioned iterative Krylov solver is selected, where the preconditioner is specified in a sparse
format.

Results

This run now takes 1m34s to run. As expected from the dense Jacobian of the system obtained when using the small
DRM mechanism (the fill in pattern is > 90%), using an iterative solver does not enable to reach speed-ups over the
simple dense direct solve. NOTE, and this is important, that this tendency will revert when sufficiently small time
steps are used. For example, if instead of 1𝑒 − 6𝑠 we took time steps of 1𝑒 − 8𝑠 (consistent with PeleC time steps),
then using the iterative GMRES solver would have provided significant time savings. This is because the smaller the
time step the closer the system matrix is from the identity matrix and the GMRES iterations become really easy to
complete.

This example illustrates that choosing the “best” and “most efficient” algorithm is far from being a trivial task, and will
depend upon many factors. Table 3.6 provides a summary of the CPU run time in solving the ReactEval_C example
with a subset of the various available CVODE linear solvers. As can be seen from the numbers, using an AJ is much
more efficient than relying upon CVODE’s built-in difference quotients. Using a sparse solver does not appear to
provide additional time savings.

3.6: Summary of ReactEval_C runs with various algorithms
(methane/air)

Solver Direct
Dense

Direct Dense
AJ

Direct Sparse
AJ

Iter. not Pre-
cond.

Iter. Precond.
(S)

KLU OFF OFF ON OFF ON
ode.reactor_type 1 1 1 1 1
cvode.solve_type 1 1 5 99 99
ode.analytical_jacobian0 1 1 1 1
Run time 52.61s 44.87s 48.64s 1m42s 1m34s

The same series of tests are performed for a mixture of n-dodecane and air (see The ReactEval_C test case with
CVODE in details), the configuration being otherwise the same as in the methane/air case. Results are sumarized in
Table 3.7. The overall tendencies remain similar. Note that the non-preconditioned GMRES solver becomes very
inefficient for this larger system. Here also, the direct sparse solve –which relies upon the KLU library, does not seem
to provide additional time savings. The fill-in pattern is 70%.
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3.7: Summary of ReactEvalCvode runs with various algorithms (n-
dodecane/air)

Solver Direct
Dense

Direct Dense
AJ

Direct Sparse
AJ

Iter. not Pre-
cond.

Iter. Precond.
(S)

KLU OFF OFF ON OFF ON
ode.reactor_type 1 1 1 1 1
cvode.solve_type 1 1 5 99 99
ode.analytical_jacobian0 1 1 1 1
Run time 6m25s 5m33s 6m32s 21m44s 10m14s

3.2.5 Current Limitations

Note that currently, all sparse operations rely on an Analytical Jacobian. This AJ is provided via the chemistry routines
dumped by the CEPTR code. Those routines are generated in a pre-processing step, when the sparsity pattern of the
AJ is still unknown. As such, all entries of the AJ are computed at all times, and when a sparsity solver is chosen, the
AJ is in fact “sparsified” to take advantage of the sparse linear algebra. The “sparsification” process involves a series
of loop in the cpp that takes a significant amount of the CPU time most of the time. However, it is always good to
verify that this is the case. AMREX’s TINY_PROFILER features is a handy tool to do so.

3.2.6 Tricks and hacks, stuff to know

When using DVODE, there is a hack enabling the user to reuse the Jacobian instead of reevaluating it from scratch.
This option is triggered when setting the extern_probin_module flag new_Jacobian_each_cell to 0.
This can be done in PelePhysics by adding the following line in the probin file:

&extern
new_Jacobian_each_cell = 0

/

A similar feature is currently not available in CVODE, although it would be possible to modify the CVodeReInit
function to reinitialize only a subset of counters. This is currently under investigation. The user still has some control
via the CVODE flag CVodeSetMaxStepsBetweenJac.

3.2.7 How does CVODE compare with DVODE ?

Depending on whether the famous Jacobian hack is activated or not in DVODE, the completion time of the run can
be decreased significantly. The same test case as that described in the previous section can also be integrated with
DVODE. For that purpose, the FORTRAN routines implementing the DVODE integration have been interfaced with
C++ via a FORTRAN header. The run is thus identical to ReactEval_C with CVODE. Only the GNUmakefile needs
to be modified:

...
#######################
# ODE solver OPTIONS: DVODE (default) / SUNDIALS / RK explicit
#######################
# Activates use of SUNDIALS: CVODE (default) / ARKODE
USE_SUNDIALS_PP = FALSE
...

#######################
...
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and, as explained in section Tricks and hacks, stuff to know, the famous AJ hack can be activated via the probin file.

Two runs are performed, activating the hack or not. Times are reported in Table 3.8.

3.8: Summary of a CVODE vs a DVODE chemistry integration on the
same test case

Solver Direct Dense Direct Dense Direct Dense + hack
KLU OFF OFF OFF
USE_SUNDIALS_PP ON (CVODE) OFF (DVODE) OFF (DVODE)
ode.reactor_type 1 1 1
cvode.solve_type 1 N/A N/A
ode.analytical_jacobian 0 N/A N/A
Run time 52.61s 53.21s 52.83s

In this case, the hack does not seem to provide significant time savings. Note also that CVODE is usually slightly
more efficient than DVODE, consistently with findings of other studies available in the literature – although in this
case all options give comparable results.

3.3 CVODE implementation in PelePhysics on GPU

3.3.1 Requirements and input files

To use CVODE on a GPU, Sundials should be build with the flag CUDA_ENABLE . A CUDA compiler also
needs to be specified. Relevant information is provided in the Sundials install guide, and an automatic script is
distributed with PelePhysics to ease the process. Refer to Install CVODE and SuiteSparse.

Note that the SuiteSparse package does not support GPU architecture and is thus no longer required. Sparse linear
algebra operations, when needed, are performed with the help of CUDA’s cuSolver.

The GNUmakefile

To run on GPUs, AMREX should be build with CUDA enabled. To do so, add this line to the GNUmakefile:

USE_CUDA = TRUE

This should activate the CUDA features of CVODE in PelePhysics too.

The input file

In the inputs.3d, the same three main keywords control the algorithm (ode.reactor_type, cvode.
solve_type, ode.analytical_jacobian). However, note that there are less linear solver options available.

• Both preconditioned or non-preconditioned GMRES options are available (cvode.solve_type = 99).
The preconditioned version is triggered via the same flag as on the CPU (ode.analytical_jacobian =
1).

• The user has the choice between two different sparse solvers.

– Sundials offers one option (the SUNLinSol_cuSolverSp_batchQR) relying upon the cuSolver to perform
batched sparse QR factorizations. This version is enabled via cvode.solve_type = 5 and ode.
analytical_jacobian = 1.
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– Another version is available via cvode.solve_type = 1 and ode.analytical_jacobian =
1. This version relies upon a pre-computed Gauss-Jordan Solver, and is fairly efficient for problems of
moderate size.

3.3.2 Grouping cells together

To take full advantage of the GPU power, many intensive operations of similar nature should be performed in parallel.
In PelePhysics, this is achieved by grouping many cells together, and integrating each one in separate threads within
one CVODE instance. Indeed, the flow of operations to solve one set of ODEs is very similar from one cell to the
next, and one could expect limited thread divergence from this approach. Fig. 3.3 summarizes the idea. Note that the
Jacobian of the group of cells is block-sparse, and any chosen integration method should take advantage of this.

3.3: n cells are solved together in one CVODE instance. The big-matrix is block-sparse.

In the current implementation, the number of cells that are grouped together is equal to the number of cells contained
in the box under investigation within a MultiFab iteration.

3.3.3 The ReactEval_C_GPU test case in details

A series of tests are performed on the GPU for a mixture of methane and air, with the intent of evaluationg the
performance of the chemistry solvers. The test case, configuration and initial conditions are similar to that described
in The ReactEval_C test case with CVODE in details. The mechanism employed is the drm.

The GNUmakefile

The full file reads as follows:

The input file

The Results

Results are sumarized in Table 3.9.
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3.9: Summary of ReactEvalCvode_GPU runs with various algorithms
(methane/air)

Solver Direct Sparse I Direct Sparse II Iter. not Precond. Iter. Precond. (S)
reactor_type 1 1 1 1
cvode.solve_type 1 5 99 99
ode.analytical_jacobian 1 1 0 1
Run time 13s 20s 19s 36s

3.3.4 Current Limitations

The current GPU implementation of CVODE relies on the launch of many kernels from the host. As such, a CVODE
instance does not live directly on the GPU; rather, the user is in charge of identifying and delegating computation-
intensive part of the RHS, Jacobian evaluation, etc. The current implementation thus suffers from the cost of data
movement, and parallelization is limited due to required device synchronizations within CVODE.

3.4 Analytically reduced chemistry via quasi-steady state (QSS) as-
sumption in PelePhysics

3.4.1 The QSS assumption

Given a detailed chemical mechanism, some species can sometimes be assumed to be in a quasi-steady state (QSS).
Formally, if species 𝐴 is assumed to be in a QSS then

𝜕[𝐴]

𝜕𝑡
= 0,

where [𝐴] is the molar concentration of species 𝐴. If the set of QSS species is judiciously chosen, macroscopic
quantities of interest such as ignition delay or laminar flame speed are only mildly affected by the QSS assumption
[DRG2005].

3.4.2 The advantage of the QSS assumption

Using the elementary reactions of the chemical mechanism, it is possible to write a set of algebraic equations that
relate QSS species to non-QSS species. In turn, it is not necessary to transport the QSS species in the flow solver, as
their concentration can be directly obtained from the non-QSS species.

In addition, QSS species are typically species that induce stiffness in the chemical mechanism since they evolve on
scales different that the non-QSS species.

3.4.3 From non-QSS species to QSS species concentration

The set of algebraic equations that result from the QSS assumption does not always easily result in a simple algebraic
relation between a given QSS species and all the non-QSS species. To do this, it is necessary to apply some form of
linearization to the reactions involved [SYS2006]. In addition, even in the presence of linear relations, QSS species
may depend on one another. The following figure shows the relation graph between the QSS species of a reduced
𝑁 − 𝐶12𝐻26 mechanism [ND2018]. The arrows indicate that a QSS species concentration depends on another QSS
species concentration. It can also be seen that dependency groups exist among the QSS species. In PelePhysics it is
possible to deduce invert analytically the linear system of equations given an arbitrary relation graph.
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3.4: Relation graph between QSS species for N-dodecane mechanism [ND2018]
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3.4.4 Linearizing the set of equations

In general, the QSS assumption results in a set of equations that are non-linearly coupled making it difficult to invert
the system. The non-linear relations can arise if two or more QSS-species are on the same side of an elementary
reaction, or if the stoichiometric coefficient of a QSS-species is not equal to one. Below, the relation graph between
the QSS species plotted above is expanded with dots that denote reactions that relate QSS-species. Dots or species are
colored in red if they are involved in a quadratic coupling.

3.5: Graph of dependencies between QSS species for N-dodecane mechanism [ND2018], augmented with reactions.
Red species or dots denote species and reactions involved in quadratic coupling.

From here, it is necessary to eliminate the quadratic coupling to linearize the set of algebraic equations that result from
the QSS assumption. Three methods can be envisioned: either one relaxes the QSS assumption by reducing the set
of QSS species (Method 1) or one can eliminate the reactions that induce quadratic coupling. In case reactions are
reversible, it can happen that either the forward or the backward reaction induces the quadratic coupling. Either one
can remove both the forward and the backward reaction (Method 2) or remove either the backward or the forward
reaction (Method 3).

All three methods are available in PelePhysics. By default, Method 3 is activated as it is computationally efficient
and accurate (as will be shown below). Method 1 is the most accurate and Method 2 is the most computationally
efficient in our experience. Given that each method has its advantage, we decided to allow the user to choose either
one according to his/her needs.

3.4.5 Validation

The three linearization methods are validated against the skeletal 𝑁−𝐶12𝐻26 [SKEL2017]. Using 343 0D calculation
that span the range of applicability of the QSS assumption (𝜑 = [0.5, 2.0], 𝑝 = [1𝑎𝑡𝑚, 50𝑎𝑡𝑚], 𝑇 = [800𝐾, 1600𝐾]),
the ignition delay is computed using the skeletal mechanism (SK53) and each one of the three linearization methods
for the QSS mechanism (RedXX). The left plot shows the correlation between the ignition delay from the skeletal
mechanism and the reduced version. The statistics of the relative error between the reduced and the skeletal mechanism
are shown in the title of that plot. The right plot shows the ignition delay values at high-pressure conditions only.
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3.6: Left: Scatter plot of the ignition delay measured with the QSS mechanism linearized and the skeletal mecha-
nism. Right: Ignition delays measured for the skeletal mechanism and QSS mechanism linearized at high-pressure
conditions. Top: Method 1. Middle: Method 2. Bottom: Method 3.
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3.4.6 Analytical Jacobian

In several computational experiments, using analytical Jacobians was found to provide better stability or efficiency
compared with finite difference approximation or numerical inversion (see also fig:qss_integrator). Compared with
non-QSS mechanisms, analytical Jacobians need to reflect the dependence of each QSS species on non-QSS species.
However, QSS species may depend on an ensemble of other non-QSS species and therefore ensemble of reactions.
Therefore, analytical Jacobian cannot be constructed by sequentially adding the contribution of each reaction. This
significantly complicates the analytical jacobian generation. Failure to include the dependence of QSS species with
respect to non-QSS species typically results in wrong ignition profiles, unless very small timesteps are used, as seen
in figure fig:qss_aj.

3.7: Temperature of a 0D reactor at constant pressure for NC12H26. Initial temperature is 600K, initial molar fraction
of O2 is 0.7 and initial molar fraction of fuel is 0.3. Left: Results without inclusion of dependence of QSS species
with respect to non-QSS species. Right: Result with inclusion of dependence of QSS species with respect to non-QSS
species.

To ease the implementation of analytical Jacobian in presence of QSS species, a symbolic approach is used to construct
the analytical Jacobian. This strategy has the advantage of not requiring complex logic, and being flexible and readable
for future development. For the last row of the Jacobian (partial difference of reaction rate with respect to temperature),
finite difference is used since perturbations in temperature are less susceptible to numerical errors than perturbations
in species concentrations. During the construction of the reaction rates, the operations printed to file are recorded
symbolically using the sympy and symengine library [SYMPY]. For computational efficiency during the symbolic
differentiation, the chain-rules terms are computed and the final expressions are computed and assembled by chain-
ruling using logic internal to CEPTR rather than sympy. We have found that this speeds up the Jacobian construction
cost by a factor 10.

To activate the use of symbolic jacobian, one needs to pass the flag --qss_symbolic_jacobian to CEPTR.

Printing the Jacobian terms one by one is not possible since the expressions that include QSS species are typically
very large. Instead, the expressions are reduced via common sub-expression precomputing that are later used in each
term of the Jacobian. The number of subexpressions may be orders of magnitude larger than the number of Jacobian
entries which can be problematic if the computational architecture has limited memory.

Several formatting strategies have been implemented to mitigate the memory footprint of the symbolic Jacobian. They
can be adjusted by providing a .toml file to CEPTR via the qss_format_input flag. A model input file is
provided in the Tutorials section of this documentation. A model execution script for generating a mechanism for
dodecane_lu_qss is available under the Tutorials section of this documentation.

The formatting options are the following

• hformat (string)
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– cpu will print intermediate variables used for chainruling. This gives a “readable” version of the
Jacobian entries, albeit memory consuming.

– gpu will not print intermediate variables used for chainruling, and instead will replace them directly
in the Jacobian entries. This gives a less readable version of the Jacobian, but more memory efficient.

• remove_1 (boolean) will replace expressions of the type 1.0 * xxx into xxx.

• remove_pow (boolean) will convert expressions of the type pow(xxx,n) into multiplications or division.
The conversion occurs for n<=3 and n>=-3 consistent with optimCuda

• remove_pow10 (boolean) will convert expressions of the type pow(10,xxx) into exp(ln(10)*xxx),
consistent with optimCuda

• min_op_count (integer) counts number operations used to construct each common subexpression and re-
place the common subexpression if the number of operations is less or equal to n

• min_op_count_all (integer) is similar to min_op_count but also counts how many times that common
subexpression is used later. The meaning of n is different than for min_op_count as it refers to how many
more operations will be done if the common subexpression is eliminated. This option should be prefered to
min_op_count as it tends to only marginally increase the file size (therefore compile time), while still being
memory efficient.

• gradual_op_count (boolean) is useful if min_op_count or min_op_count_all are active. It loops
from 1 to n and gradually eliminate the common subexpressions. This has the advantage of ensuring that the
memory footprint is strictly monotonically decreasing as n is increased.

• store_in_jacobian (boolean) will use the Jacobian array as a temporary space to store intermediate vari-
ables. In particular, the last row of the Jacobian (dependence with respect to temperature) is done by finite
difference which requires storing intermediate variables (production rate, forward and backward reactions).
When the option is active, the productionRate function used to compute the finite difference is replaced
with a productionRate_light functions where references to different parts of the Jacobian are used in
place of allocating new arrays.

• round_decimals (boolean) will round floats printed by sympy when possible to minimize character count
in the mechanism.H file.

• recycle_cse (boolean) will reuse subexpressions that are not used later to avoid declaring new temporary
reals.

• remove_single_symbols_cse (boolean) will remove common subexpressions that are made of 1 opera-
tion and 1 symbol. Those common subexpressions are typically -xxx and may not appear as worth replacing
because they save 1 operations and are reused multiple times. However, when replaced in the later expressions,
the - operations typically disappear or is merged into another operations which actually does not increase the
total number of operations.

The analytical Jacobian for QSS mechanisms is typically more accurate and stable than GMRES, and is on par with
the finite difference Jacobian of CVODE as seen in fig:qss_integrator

In terms of speed, the analytical Jacobian 0D reactor is faster on CPU than finite difference Jacobian and GMRES.
For the piston bowl challenge problem, the analytical Jacobian relative speed depends on the prevalence of chemical
reactions. At some points, the AJ is slower than GMRES with PeleC, at others, AJ is faster. In PeleLM cases, AJ was
found to be faster than GMRES. Further optimization and tests are still ongoing.

3.4.7 Using the Analytical Jacobian

To use the analytic Jacobian QSS mechanisms in a Pele run, one must specify the correct solve_type. The choice
of the solve_typewill determine whether or not the analytic Jacobian is used. With CUDA, both magma_direct
and sparse_direct will use the analytic Jacobian, while on HIP only magma_direct will trigger the use of the
analytic Jacobian parts.
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3.8: Temperature of a 0D reactor at constant pressure for NC12H26. Initial temperature is 600K, initial molar fraction
of O2 is 0.7 and initial molar fraction of fuel is 0.3. Results are shown for finite difference jacobian (red thick line),
analytical jacobian (black line) and GMRES (crosses) using the same tolerances.

3.5 CEPTR: Chemistry Evaluation for Pele Through Recasting

We use CEPTR to generate C++ mechanism files from Cantera yaml chemistry files. CEPTR is a python package part
of the PelePhysics source code.

3.5.1 Software requirements

The CEPTR package uses poetry to manage the Python dependencies. Poetry is therefore required to use CEPTR and
can typically be installed through system package managers (e.g. HomeBrew) or following the instructions in poetry’s
documentation.

To install CEPTR dependencies:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry update

3.5.2 Usage

There are three ways to use CEPTR to generate C++ mechanism files for a given chemistry

1. Using CEPTR directly:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/LiDryer/
→˓mechanism.yaml

2. Using a helper script in the directory containing the mechanism.yaml file:
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$ ./convert.sh

3. Using a helper script in the Models directory:

$ bash ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/converter.sh -f ./LiDryer/
→˓mechanism.yaml

For non-reduced chemistries, CEPTR can take a file with a list of mechanism.yaml files to convert:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -l ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_mech

For reduced chemistries, CEPTR can take a file with a list of qssa.yaml and qssa_input.toml to convert:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -lq ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_qss_mech

For generating qssa.yaml for reduced chemistries, CEPTR can take a file with a list of skeletal.yaml and
non_qssa_list.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run qssa -lq ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_qss_mech

To generate all mechanisms:

$ poetry run convert -l ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_mech
$ poetry run qssa -lq ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_qss_mech
$ poetry run convert -lq ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/list_qss_mech

3.5.3 Converting CHEMKIN files

We rely on Cantera’s ck2yaml utility to convert CHEMKIN files to the Cantera yaml format (and proceed as above
with CEPTR on the resulting yaml file):

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run ck2yaml --input=${PATH_TO_CHEMKIN_DIR}/mechanism.inp --thermo=${PATH_TO_
→˓CHEMKIN_DIR}/therm.dat --transport=${PATH_TO_CHEMKIN_DIR}/tran.dat --permissive

The files tran.dat and therm.dat are optional if already included in the .inp file.

3.5.4 Generating a QSS chemistry file

To generate a QSS chemistry yaml file from another yaml file, one executes:

$ poetry run qssa -f ${PATH_TO_YAML}/skeletal.yaml -n ${PATH_TO_YAML}/non_qssa_list.
→˓yaml

The full list of options is:

$ poetry run qssa -h
usage: qssa [-h] -f FNAME -n NQSSA [-m {0,1,2}] [-v]

Mechanism converter

(continues on next page)
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(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-f FNAME, --fname FNAME

Mechanism file
-n NQSSA, --nqssa NQSSA

Non-QSSA species list
-m {0,1,2}, --method {0,1,2}

QSSA method (default: 2)
-v, --visualize Visualize quadratic coupling and QSSA dependencies

For a detailed description of these options and a further information on the way QSS mechanism are treated in CEPTR
the reader may consult the QSS section.

See Tutorials (Generating NC12H26 QSS mechanism with analytical jacobian and Generating NC12H26 QSS mech-
anism without analytical jacobian) for generating QSS mechanisms from the .yaml files.
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CHAPTER 4

Transport

PelePhysics supports computation of several transport coefficients: dyanmic viscosity (𝜇), bulk viscosity (𝜉), thermal
conductivity (𝜆), mixture-averaged species diffusion coefficients (𝐷𝑖), and Soret coefficients/thermal diffusion ratio
(𝜒𝑖). There are three choices of model for computing these transport coefficients:

• Constant with user-specified values

• Sutherland, adding a simple temperature dependence to user-specified values

• Simple where transport coefficients are computed based on thermochemistry data for the multi-component
mixture

The choice between these transport models is made at compile time. When using GNUmake, this is done by setting
the Transport_Model parameter in the GNUmakefile.

The appropriate choice of transport model depends on the EOS being used. For perfect gasses (GammaLaw), con-
stant transport must be used. For reacting flow calculations using either the ideal gas (Fuego) or Soave-Redlich-
Kwong equations of state, Simple transport is appropriate in most cases. Note that based on code implementation
and physics considerations, the EOS/transport combinations of GammaLaw/Sutherland, GammaLaw/Simple, Soave-
Redlich-Kwong/Constant and Soave-Redlich-Kwong/Sutherland are not supported and attempting to compile with
any of those combinations will lead to an error message similar to this:

error: static_assert failed due to requirement 'is_valid_physics_combination
→˓<pele::physics::eos::SRK,

pele::physics::transport::ConstTransport>::value' "Invalid physics combination
→˓attempted"

Note: For the flow solvers in the Pele suite, Soret effects are only supported in PeleLMeX at present. The bulk
viscosity is utilized in PeleC but not in the low-Mach algorithm used in PeleLM and PeleLMeX.

4.1 Constant

In this model, all transport coefficients are user-specified constants. They can be set in a simulation input file using:
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transport.const_viscosity = 1.81e-4
transport.const_bulk_viscosity = 0.0
transport.const_conducitivity = 2.623e2
transport.const_diffusivity = 0.242
transport.const_thermal_diffusion_ratio = 0.0
transport.units = CGS

Any unspecified quantity is assumed to be 0.0. The transport.units parameter indicates the units of the param-
eters set in the input file and can be CGS or MKS. If not specified, CGS units are assumed, and regardless of the value
of this parameter the output of all transport functions is in CGS units.

4.2 Sutherland

This is another minimal model, based on the temperature dependence of viscosity proposed by Sutherland (1893):

𝜇 = 𝜇𝑟𝑒𝑓

(︂
𝑇

𝑇𝑟𝑒𝑓

)︂3/2
𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆
,

where 𝜇𝑟𝑒𝑓 is the dynamic viscosity at a reference temeprature 𝑇𝑟𝑒𝑓 and 𝑆 is a constant. In the PelePhysics imple-
mentation, the thermal conductivity is then computed based on a user-specified Prandtl number, 𝜆 = 𝜇𝑐𝑝/𝑃𝑟, where
the heat capacity 𝑐𝑝 is evaluated using the EOS model. The user may specify constant values for the bulk viscosity
and diffusvity (a single value for all species). Soret effects are not supported for this Transport model (𝜒𝑖 = 0).

For Sutherland transport, there are several runtime parameters that may be specified in the input file:

transport.Prandtl_number = 0.7
transport.viscosity_mu_ref = 17.16
transport.viscosity_T_ref = 273.15
transport.viscosity_S = 110.4
transport.const_bulk_viscosity = 0.0
transport.const_diffusivity = 1.0

The values listed above are the defaults for each parameter. Note that the temperature is specified in K and all other
dimensional quantities must be specified in CGS units.

4.3 Simple

In this model, transport coefficients are evaluated from data available in the chemical mechanisms (set at compilation
using Chemistry_Model). The implementation isbased on that in EGlib (see Ern and Giovangigli (1995)) and
simplified to compute only mixture-averaged diffusivities for each species. The only option that may be specified at run
time is whether or not to compute Soret coefficients, which is done by setting the input file parameter transport.
use_soret to 1 or 0, respectively (default: 0).

When Simple transport is used with the Soave-Redlich-Kwong equation of state, additional corrections are used to
modify the transport coefficients to account for real gas effects based on Chung et al. (1988). Soret effects are not
supported for SRK.
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CHAPTER 5

Equation of State

PelePhysics allows the user to use different equation of state (EOS) as the constitutive equation and close the com-
pressible Navier-Stokes system of equations. All the routines needed to fully define an EOS are implemented through
PelePhysics module. Available models include:

• A simple GammaLaw model for a single component perfect gas

• An ideal gas mixture model (similar to the CHEMKIN-II approach) labeled Fuego

• The Soave-Redlich-Kwong cubic equation of state; Peng-Robinson support was started in the original
Fortran version of the code but stalled and is not supported.

Examples of EOS implementation can be seen in PelePhysics/Eos. The choice between these Eos mod-
els is made at compile time. When using GNUmake, this is done by setting the Eos_Model parameter in the
GNUmakefile.

The following sections will fully describe the implementation of Soave-Redlich-Kwong, a non-ideal cubic EOS, for a
general mixture of species. Some examples of the old Fortran implementation of the code are given; these have since
been ported to C++. Integration with CEPTR, for a chemical mechanism described in a chemkin format, will also be
highlighted. For an advanced user interested in implementing a new EOS this chapter should provide a good starting
point.

Note: For the flow solvers in the Pele suite, the SRK EOS is presently only supported in PeleC, and not PeleLM(eX).

5.1 GammaLaw

This EOS corresponds to a single component perfect gas, i.e. a gas that follows 𝑝 = 𝜌�̂�𝑇 and 𝑒 = 𝑐𝑣𝑇 , with constant
𝑐𝑣 , which together imply that 𝑝 = (𝛾 − 1)𝜌𝑒, where 𝛾 = 𝑐𝑝/𝑐𝑣 . The values of the relevant physical properties
(𝛾 = 1.4, 𝑀𝑊 = 28.97 g/mol) are chosen to correspond to air at standard conditions and are set in PelePhysics/
Source/PhysicsConstants.H.

When the GammaLaw EOS is used, the Chemistry_Model should be set to Null.
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5.2 Fuego

This is a multi-component ideal gas EOS to be used for mutli-component (reacting) calculations with any
Chemistry_Model besides Null. The gas mixture follows 𝑝 = 𝜌�̂�𝑇 , but with ℎ(𝑇 ) ≡

∑︀
𝑌𝑖ℎ𝑖(𝑇 ) and ℎ𝑖(𝑇 )

computed based on NASA polynomials that are included in the Chemistry_Model.

5.3 Soave-Redlich-Kwong (SRK)

The cubic model is built on top of the ideal gas models. It should be used for multi-component (reacting) calculations
where the pressure is sufficiently high that real gas effects are important; there is a significant computational cost
penalty relative ideal gas calculations. Note that the function to compute the analytical Jacobian of the chemical
system using the SRK EOS has not been implemented, so this EOS is not compatible with reaction integrators that
rely on computing the analytical Jacobian. Any additional parameters (e.g., attractions, repulsions, critical states) are
either included in the underlying Fuego database used to generate the source file model implementation, or else are
inferred from the input model data.

SRK EOS as a function of Pressure (p), Temperature(T), and 𝜏 (specific volume) is given by

𝑝 = 𝑅𝑇
∑︁ 𝑌𝑘

𝑊𝑘

1

𝜏 − 𝑏𝑚
− 𝑎𝑚

𝜏(𝜏 + 𝑏𝑚)

where 𝑌𝑘 are species mass fractions, 𝑅 is the universal gas constant, and 𝑏𝑚 and 𝑎𝑚 are mixture repulsion and
attraction terms, respectively.

5.3.1 Mixing rules

For a mixture of species, the following mixing rules are used to compute 𝑏𝑚 and 𝑎𝑚.

𝑎𝑚 =
∑︁
𝑖𝑗

𝑌𝑖𝑌𝑗𝛼𝑖𝛼𝑗 𝑏𝑚 =
∑︁
𝑘

𝑌𝑘𝑏𝑘

where 𝑏𝑖 and 𝑎𝑖 for each species is defined using critical pressure and temperature.

𝑎𝑖(𝑇 ) = 0.42748
(𝑅𝑇𝑐,𝑖)

2

𝑊 2
𝑖 𝑝𝑐,𝑖

�̄�𝑖 (𝑇/𝑇𝑐,𝑖) 𝑏𝑖 = 0.08664
𝑅𝑇𝑐,𝑖

𝑊𝑖𝑝𝑐,𝑖

where

�̄�𝑖(𝑇/𝑇𝑐,𝑖) =

(︂
1 + 𝒜

[︂
𝑓 (𝜔𝑖)

(︂
1 −

√︁
𝑇/𝑇𝑐,𝑖

)︂]︂)︂2

where 𝜔𝑖 are the accentric factors and

𝑓 (𝜔𝑖) = 0.48508 + 1.5517𝜔𝑖 − 0.151613𝜔2
𝑖

For chemically unstable species such as radicals, critical temperatures and pressures are not available. For species
where critical properties are not available, we use the Lennard-Jones potential for that species to construct attractive
and repulsive coefficients.

𝑇𝑐,𝑖 = 1.316
𝜖𝑖
𝑘𝑏

𝑎𝑖(𝑇𝑐,𝑖) = 5.55
𝜖𝑖𝜎

3
𝑖

𝑚2
𝑖

and 𝑏𝑖 = 0.855
𝜎3
𝑖

𝑚𝑖

where 𝜎𝑖, 𝜖𝑖 are the Lennard-Jones potential molecular diameter and well-depth, respectively, 𝑚𝑖 the molecular mass,
and 𝑘𝑏 is Boltzmann’s constant.

In terms of implementation, a routine called MixingRuleAmBm can be found in the SRK eos implementation. The
following code block shows the subroutine which receives species mass fractions and temperature as input. The
outputs of this routine are 𝑏𝑚 and 𝑎𝑚 .
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do i = 1, nspecies
Tr = T*oneOverTc(i)
amloc(i) = (1.0d0 + Fomega(i)*(1.0d0-sqrt(Tr))) *sqrtAsti(i)

bm = bm + massFrac(i)*Bi(i)

enddo
do j = 1, nspecies

do i = 1, nspecies

am = am + massFrac(i)*massFrac(j)*amloc(i)*amloc(j)

end do
end do

5.3.2 Thermodynamic Properties

Most of the thermodynamic properties can be calculated from the equation of state and involve derivatives of various
thermodynamic quantities and of EOS parameters. In the following, some of these thermodynamic properties for SRK
and the corresponding routines are presented.

Specific heat

For computing mixture specific heat at constant volume and pressure, the ideal gas contribution and the departure from
the ideal gas are computed. Specific heat at constant volume can be computed using the following

𝑐𝑣 =

(︂
𝜕𝑒𝑚
𝜕𝑇

)︂
𝜏,𝑌

For SRK EOS, the formula for 𝑐𝑣 reduces to

𝑐𝑣 = 𝑐𝑖𝑑𝑣 − 𝑇
𝜕2𝑎𝑚
𝜕𝑇 2

1

𝑏𝑚
𝑙𝑛(1 +

𝑏𝑚
𝜏

)

where 𝑐𝑖𝑑𝑣 is the specific heat at constant volume. Mixture specific heat at constant volume is implemented through the
routine SRK_EOS_GetMixtureCv

subroutine SRK_EOS_GetMixtureCv(state)
implicit none
type (eos_t), intent(inout) :: state
real(amrex_real) :: tau, K1

state % wbar = 1.d0 / sum(state % massfrac(:) * inv_mwt(:))

call MixingRuleAmBm(state%T,state%massFrac,state%am,state%bm)

tau = 1.0d0/state%rho

! Derivative of the EOS AM w.r.t Temperature - needed for calculating enthalpy, Cp,
→˓Cv and internal energy
call Calc_dAmdT(state%T,state%massFrac,state%am,state%dAmdT)

! Second Derivative of the EOS AM w.r.t Temperature - needed for calculating enthalpy,
→˓ Cp, Cv and internal energy
call Calc_d2AmdT2(state%T,state%massFrac,state%d2AmdT2)

(continues on next page)
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! Ideal gas specific heat at constant volume
call ckcvbs(state%T, state % massfrac, iwrk, rwrk, state % cv)

! Real gas specific heat at constant volume
state%cv = state%cv + state%T*state%d2AmdT2* (1.0d0/state%bm)*log(1.0d0+state%bm/tau)

end subroutine SRK_EOS_GetMixtureCv

Specific heat at constant pressure is given by

𝑐𝑝 =

(︂
𝜕ℎ𝑚

𝜕𝑇

)︂
𝑝,𝑌

𝑐𝑝 =
𝜕ℎ𝑚

𝜕𝑇
−

𝜕ℎ
𝜕𝜏
𝜕𝑝
𝜕𝜏

𝜕𝑝

𝜕𝑇

where all the derivatives in the above expression for SRK EOS are given by

𝜕𝑝

𝜕𝑇
=
∑︁

𝑌𝑘/𝑊𝑘
𝑅

𝜏 − 𝑏𝑚
− 𝜕𝑎𝑚

𝜕𝑇

1

𝜏(𝜏 + 𝑏𝑚)

𝜕𝑝

𝜕𝜏
= −

∑︁
𝑌𝑘/𝑊𝑘

𝑅𝑇

(𝜏 − 𝑏𝑚)2
+

𝑎𝑚(2𝜏 + 𝑏𝑚)

[𝜏(𝜏 + 𝑏𝑚)]2

𝜕ℎ𝑚

𝜕𝜏
= −

(︂
𝑇
𝜕𝑎𝑚
𝜕𝑇

− 𝑎𝑚

)︂
1

𝜏(𝜏 + 𝑏𝑚)
+

𝑎𝑚
(𝜏 + 𝑏𝑚)2

−
∑︁

𝑌𝑘/𝑊𝑘
𝑅𝑇𝑏𝑚

(𝜏 − 𝑏𝑚)2

𝜕ℎ𝑚

𝜕𝑇
= 𝑐𝑖𝑑𝑝 + 𝑇

𝜕2𝑎𝑚
𝜕𝑇 2

1

𝑏𝑚
𝑙𝑛(1 +

𝑏𝑚
𝜏

) − 𝜕𝑎𝑚
𝜕𝑇

1

𝜏 + 𝑏𝑚
+
∑︁

𝑌𝑘/𝑊𝑘
𝑅𝑏𝑚

𝜏 − 𝑏𝑚

subroutine SRK_EOS_GetMixtureCp(state)
implicit none
type (eos_t), intent(inout) :: state
real(amrex_real) :: tau, K1
real(amrex_real) :var: : Cpig
real(amrex_real) :: eosT1Denom, eosT2Denom, eosT3Denom
real(amrex_real) :: InvEosT1Denom,InvEosT2Denom,InvEosT3Denom
real(amrex_real) :: dhmdT,dhmdtau
real(amrex_real) :: Rm

state % wbar = 1.d0 / sum(state % massfrac(:) * inv_mwt(:))

call MixingRuleAmBm(state%T,state%massFrac,state%am,state%bm)

tau = 1.0d0/state%rho

! Derivative of the EOS AM w.r.t Temperature - needed for calculating enthalpy, Cp,
→˓Cv and internal energy
call Calc_dAmdT(state%T,state%massFrac,state%dAmdT)

! Second Derivative of the EOS AM w.r.t Temperature - needed for calculating enthalpy,
→˓ Cp, Cv and internal energy
call Calc_d2AmdT2(state%T,state%massFrac,state%d2AmdT2)

K1 = (1.0d0/state%bm)*log(1.0d0+state%bm/tau)

eosT1Denom = tau-state%bm

(continues on next page)
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eosT2Denom = tau*(tau+state%bm)
eosT3Denom = tau+state%bm

InvEosT1Denom = 1.0d0/eosT1Denom
InvEosT2Denom = 1.0d0/eosT2Denom
InvEosT3Denom = 1.0d0/eosT3Denom

Rm = (Ru/state%wbar)

! Derivative of Pressure w.r.t to Temperature
state%dPdT = Rm*InvEosT1Denom - state%dAmdT*InvEosT2Denom

! Derivative of Pressure w.r.t to tau (specific volume)
state%dpdtau = -Rm*state%T*InvEosT1Denom*InvEosT1Denom + state%am*(2.0*tau+state
→˓%bm)*InvEosT2Denom*InvEosT2Denom

! Ideal gas specific heat at constant pressure
call ckcpbs(state % T, state % massfrac, iwrk, rwrk,Cpig)

! Derivative of enthalpy w.r.t to Temperature
dhmdT = Cpig + state%T*state%d2AmdT2*K1 - state%dAmdT*InvEosT3Denom + Rm*state
→˓%bm*InvEosT1Denom

! Derivative of enthalpy w.r.t to tau (specific volume)
dhmdtau = -(state%T*state%dAmdT - state%am)*InvEosT2Denom + state
→˓%am*InvEosT3Denom*InvEosT3Denom - &

Rm*state%T*state%bm*InvEosT1Denom*InvEosT1Denom

! Real gas specific heat at constant pressure
state%cp = dhmdT - (dhmdtau/state%dpdtau)*state%dPdT

end subroutine SRK_EOS_GetMixtureCp

Internal energy and Enthalpy

Similarly mixture internal energy for SRK EOS is given by

𝑒𝑚 =
∑︁
𝑘

𝑌𝑘𝑒
𝑖𝑑
𝑘 +

(︂
𝑇
𝜕𝑎𝑚
𝜕𝑇

− 𝑎𝑚

)︂
1

𝑏𝑚
𝑙𝑛

(︂
1 +

𝑏𝑚
𝜏

)︂
and mixture enthalpy ℎ𝑚 = 𝑒 + 𝑝𝜏

ℎ𝑚 =
∑︁
𝑘

𝑌𝑘ℎ
𝑖𝑑
𝑘 +

(︂
𝑇
𝜕𝑎𝑚
𝜕𝑇

− 𝑎𝑚

)︂
1

𝑏𝑚
ln

(︂
1 +

𝑏𝑚
𝜏

)︂
+ 𝑅𝑇

∑︁ 𝑌𝑘

𝑊𝑘

𝑏𝑚
𝜏 − 𝑏𝑚

− 𝑎𝑚
𝜏 + 𝑏𝑚

and the implementation can be found in the routine SRK_EOS_GetMixture_H.

Speed of Sound

The sound speed for SRK EOS is given by

𝑎2 = −𝑐𝑝
𝑐𝑣

𝜏2
𝜕𝑝

𝜕𝜏
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Species enthalpy

For computation of kinetics and transport fluxes we will also need the species partial enthalpies and the chemical
potential. The species enthalpies for SRK EOS are given by

ℎ𝑘 =
𝜕ℎ𝑚

𝜕𝑌𝑘
−

𝜕ℎ
𝜕𝜏
𝜕𝑝
𝜕𝜏

𝜕𝑝

𝜕𝑌𝑘

where

𝜕ℎ𝑚

𝜕𝑌𝑘
= ℎ𝑖𝑑

𝑘 + (𝑇
𝜕2𝑎𝑚
𝜕𝑇𝜕𝑌𝑘

− 𝜕𝑎𝑚
𝜕𝑌𝑘

)
1

𝑏𝑚
ln

(︂
1 +

𝑏𝑚
𝜏

)︂
−
(︂
𝑇
𝜕𝑎𝑚
𝜕𝑇

− 𝑎𝑚

)︂[︂
1

𝑏2𝑚
ln

(︂
1 +

𝑏𝑚
𝜏

)︂
− 1

𝑏𝑚(𝜏 + 𝑏𝑚)

]︂
𝜕𝑏𝑚
𝜕𝑌𝑘

+
𝑎𝑚

(𝜏 + 𝑏𝑚)2
𝜕𝑏𝑚
𝜕𝑌𝑘

− 1

𝜏 + 𝑏𝑚

𝜕𝑎𝑚
𝜕𝑌𝑘

+ 1/𝑊𝑘
𝑅𝑇𝑏𝑚
𝜏 − 𝑏𝑚

+
∑︁
𝑖

𝑌𝑖

𝑊𝑖
𝑅𝑇

(︂
1

𝜏 − 𝑏𝑚
+

𝑏𝑚
(𝜏 − 𝑏𝑚)2

)︂
𝜕𝑏𝑚
𝜕𝑌𝑘

𝜕𝑝

𝜕𝑌𝑘
= 𝑅𝑇

1

𝑊𝑘

1

𝜏 − 𝑏𝑚
− 𝜕𝑎𝑚

𝜕𝑌𝑘

1

𝜏(𝜏 + 𝑏𝑚)

+

(︂
𝑅𝑇

∑︁ 𝑌𝑖

𝑊𝑖

1

(𝜏 − 𝑏𝑚)2
+

𝑎𝑚
𝜏(𝜏 + 𝑏𝑚)2

)︂
𝜕𝑏𝑚
𝜕𝑌𝑘

Chemical potential

The chemical potentials are the derivative of the free energy with respect to composition. Here the free energy f‘ is
given by

𝑓 =
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Other primitive variable derivatives

The Godunov (FV) algorithm also needs some derivatives to express source terms in terms of primitive variables. In
particular one needs

𝜕𝑝

𝜕𝜌

⃒⃒⃒⃒
𝑒,𝑌

= −𝜏2
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𝜕𝜏
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and

𝜕𝑝

𝜕𝑒

⃒⃒⃒⃒
𝜌,𝑌

=
1

𝑐𝑣

𝜕𝑝

𝜕𝑇

All of the terms needed to evaluate this quantity are known except for

𝜕𝑒

𝜕𝜏
=

1

𝜏(𝜏 + 𝑏𝑚)

(︂
𝑎𝑚 − 𝑇

𝜕𝑎𝑚
𝜕𝑇

)︂
.
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CHAPTER 6

Utility

In addition to routines for evaluating chemical reactions, transport properties, and equation of state functions, Pele-
Physics includes other shared utilities that are utilized by both PeleC and PeleLM(eX). These utilities include support
for:

• Premixed Flame (PMF) initialization from precomputed 1D flame profiles

• Turbulent inflows (TurbInflow) on domain boundaries from saved turbulence data

• Plt file management (PltFileManager)

• Output of runtime Diagnostics

This section provides relevant notes on using these utilities across the Pele family of codes. There may be additional
subtleties based on the code-specific implementation of these capabilities, in which case it will be necessary to refer
to the documentation of the code of interest.

6.1 Premixed Flame Initialization

Pre-computed profiles from 1D freely propogating premixed flames are used to initialize a wrinkled flamesheet in
PeleLMeX, among other problems. Right now, this capability is not used in PeleC, but similar code that accomplishes
the same task using data files of the same format is applied in PeleC. The code has two parts, a data container defined
in PMFData.{H,cpp} that loads and stores data from the pre-computed profile, and a function defined in PMF.H
that, when provided this data structure and ther bounds of a cell of interest, returns temperature, velocity, and mole
fractions from that location.

This code has two runtime parameters that may be set in the input file:

pmf.datafile = pmf.dat
pmf.do_cellAverage = 1

The first parameter specifies the path to the PMF data file. This file contains a two-line header followed by whitespace-
delimited data columns in the order: position (cm), temperature (K), velocity (cm/s), density(g/cm3), species mole
fractions. Sample files are provided in the relevant PeleLMeX (and PeleC) examples, and the procedure to generate
these files with a provided script is described below. The second parameter specifies whether the PMF code does
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a finite volume-style integral over the querried cell (pmf.do_cellAverage = 1) or whether the code finds an
interpolated value at the midpoint of the querried cell (pmf.do_cellAverage = 0)

6.1.1 Generating a PMF file

The script cantera_pmf_generator.py solves a 1D unstrained premixed flame using Cantera and saves it in
the appropriate file format for use by the Pele codes. To use this script, first follow the CEPTR instructions for setting
up poetry. Then return to the Utility/PMF/ directory and run the script:

poetry -C ../../Support/ceptr/ run python cantera_pmf_generator.py -m dodecane_lu -f
→˓NC12H26 -d 0.01 -o ./

This example computes a dodecane/air flame using the dodecane_lu mechanism on a 0.01 m domain, and saves
the resulting file to the present directory. You may choose any mechanism included with PelePhysics, as the Cantera
.yaml format is included for all mechanisms. If you choose a reduced mechanism with QSS species, the 1D solution
will be obtained using the skeletal version of the mechanism without QSS species being remove, as Cantera does
not support QSS by default. In this case, the script will also save a data file with QSS species removed (ending in
-qssa-removed.dat) that is suitable for use with the QSS mechanisms in Pele. A range of additional conditions
may be specified at the command line. To see the full set of options, use the help feature:

poetry -C ../../Support/ceptr/ run python cantera_pmf_generator.py --help

Note that when running Cantera, you may need to adjust the domain size to be appropriate for your conditions in order
for the solver to converge. At times, you may also need to adjust the solver tolerances and other parameters that are
specified within the script.

An additional script is provided to allow plotting of the PMF solutions. This script is used as follows (if no variable
index is specified, temperature is plotted by default):

poetry -C ../../Support/ceptr/ run python plotPMF.py <pmf-file> <variable-index>

6.2 Turbulent Inflows

Placeholder. PelePhysics supports the capability of the flow solvers to have spatially and temporally varying inflow
conditions based on precomputed turbulence data.

6.2.1 Generating a turbulence file

A python script is used to generate a synthetic turbulence spectrum.

6.3 Plt File Management

This code contains data structures used to handle data read from plt files that is utilized by the routines that allow the
code to be restarted based on data from plt files.

6.4 Diagnostics

Placeholder. Once the porting of diagnostics from PeleLMeX to PelePhysics/PeleC is complete, documentation can
be added here.

42 Chapter 6. Utility

https://doi.org/10.5281/zenodo.6387882


CHAPTER 7

Tutorials

7.1 Tutorial 1 - Generating NC12H26 QSS mechanism with analytical
Jacobian

Update poetry:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry update

Make sure the list of non-QSS species is correct in ${PELE_PHYSICS_HOME}/Support/Mechanism/
Models/dodecane_lu_qss/non_qssa_list.yaml

In the next step, skeletal.yaml is the mechanism.yaml of the skeletal version of the mechanism (here avail-
able under ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu). If only CHEMKIN
files are available for the skeletal mechanism, see Converting CHEMKIN files for generating skeletal.yaml.

Generate qssa.yaml from skeletal.yaml and non_qssa_list.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run qssa -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/
→˓skeletal.yaml -n ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/non_
→˓qssa_list.yaml

Generate mechanism.H and mechanism.cpp from qssa.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/
→˓qssa.yaml --qss_format_input ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_
→˓lu_qss/qssa_input.toml --qss_symbolic_jacobian

We recommend using the following qssa_input.toml:

$ [Readability]
hformat = "gpu"

(continues on next page)
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(continued from previous page)

[Arithmetic]
remove_1 = true
remove_pow = true
remove_pow10 = true

[Replacement]
min_op_count = 0
min_op_count_all = 10
gradual_op_count = true
remove_single_symbols_cse = true

[Recycle]
store_in_jacobian = true
recycle_cse = true

[Characters]
round_decimals = true

7.2 Tutorial 2 - Generating NC12H26 QSS mechanism without analyt-
ical Jacobian

Update poetry:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry update

Make sure the list of non-QSS species is correct in Support/Mechanism/Models/dodecane_lu_qss/
non_qssa_list.yaml

In the next step, skeletal.yaml is the mechanism.yaml of the skeletal version of the mechanism (here avail-
able under ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu). If only CHEMKIN
files are available for the skeletal mechanism, see Converting CHEMKIN files for generating skeletal.yaml.

Generate qssa.yaml from skeletal.yaml and non_qssa_list.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run qssa -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/
→˓skeletal.yaml -n ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/non_
→˓qssa_list.yaml

Generate mechanism.H and mechanism.cpp from qssa.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu_qss/
→˓qssa.yaml

7.3 Tutorial 3 - Generating NC12H26 Skeletal mechanism

Update poetry:
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$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry update

For all the available mechanisms, a Cantera yaml format is provided. If only CHEMKIN files are available, see
Converting CHEMKIN files for generating mechanism.yaml.

Generate mechanism.H and mechanism.cpp from mechanism.yaml:

$ cd ${PELE_PHYSICS_HOME}/Support/ceptr
$ poetry run convert -f ${PELE_PHYSICS_HOME}/Support/Mechanism/Models/dodecane_lu/
→˓mechanism.yaml

7.3. Tutorial 3 - Generating NC12H26 Skeletal mechanism 45
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CHAPTER 8

Developer Guidelines

The following developer guidelines apply to all code that is to be committed to the Pele suite.

Before adding files for a commit to be pushed to a branch of PelePhysics, first run the following formatting tools
depending on the type of code:

8.1 C++ Code

All C++ code should be processed by the Clang formatter prior to being added for commit.

Run clang-format:

clang-format -i FILE.cpp
clang-format -i FILE.H

Will apply all of the correct formatting and make the changes directly to the cpp source files.

8.2 Python

The tools necessary to format Python code (currently only used within CEPTR) are maintained through Poetry.

1) Run isort:

poetry run isort .

This will perform proper sorting of the installed Python libraries.

2) Run black:

poetry run black .

This will perform proper formatting of all Python files to be consistent with all current files.
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3) Run flake8:

poetry run flake8 .

This will run diagnostics on all the Python files and will list a series of issues that need to be addressed to adhere to
current Python best practices.

Once all flake8 messages have been addressed, the code will match the Pele suite standard.
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CHAPTER 9

Indices and tables

• genindex

• search
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